Structures of $\mathrm{K}\left[\mathrm{Pt}\left(\mathrm{Cl}_{\mathbf{3}}\left(\mathrm{C}_{\mathbf{4}} \mathrm{H}_{\mathbf{1 1}} \mathrm{N}\right)\right] \cdot \mathbf{0} \cdot \mathbf{5} \mathrm{H}_{\mathbf{2}} \mathrm{O}\right.$ and $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{Pt}(\mathrm{Cl})_{\mathbf{3}}\left(\mathrm{C}_{\mathbf{3}} \mathbf{H}_{\mathbf{9}} \mathrm{N}\right)\right]_{\mathbf{2}}$

By Fernande D. Rochon and Robert Melanson
Département de chimie, Université du Québec à Montréal, CP 8888, Succ. A, Montréal, Canada H3C 3P8

(Received 5 November 1990; accepted 14 May 1991)

Abstract

Potassium tert-butylaminetrichloroplatinate(II) hemihydrate, $\mathrm{K}^{+} . \mathrm{C}_{4} \mathrm{H}_{11} \mathrm{Cl}_{3} \mathrm{NPt}^{-} .0 \cdot 5 \mathrm{H}_{2} \mathrm{O}$, $M_{r}=422 \cdot 70$, monoclinic, $C 2 / c, a=29 \cdot 640$ (13), $b=$ 6.008 (2),$\quad c=12.471$ (6) $\AA, \quad \beta=93.41$ (4) ${ }^{\circ}, \quad V=$ 2217 (2) $\AA^{3}, Z=8, D_{x}=2.538 \mathrm{Mg} \mathrm{m}^{-3}, \lambda($ Mo $K \alpha)$ $=0.71069 \AA, \mu=13.84 \mathrm{~mm}^{-1}, \quad F(000)=1560, T=$ $295 \mathrm{~K}, R=0.029$ for 1743 unique observed reflections. Pt has square-planar coordination with Pt $\mathrm{Cl}=2.313(4), 2.309(4), 2.304(4)$ and $\mathrm{Pt}-\mathrm{N}=$ 2.03 (1) \AA. The compound crystallizes with a molecule of water located on a twofold axis. The water molecule is exceptionally close to the K^{+}ion $\left[\mathrm{O} \cdots \mathrm{K}^{+}\right.$ $=2.771(6) \AA$]. Packing energy around the K^{+}seems an important stabilizing factor. The amino group is hydrogen bonded to one chloro ligand. Tetraammineplatinum bis[trichloro(isopropylamine)platinate(II)], $\mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{Pt}^{2+} .2 \mathrm{C}_{3} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{NPt}^{-}, M_{r}=984 \cdot 33$, monoclinic, $P 2_{1} / c, a=9.291$ (4), $b=8.120$ (4), $c=$ $15 \cdot 140$ (5) $\AA, \quad \beta=90 \cdot 91^{\circ}, V=1142 \cdot 0$ (8) $\AA^{3}, Z=2$, $D_{x}=2.861 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu=$ $19.36 \mathrm{~mm}^{-1}, F(000)=888, T=295 \mathrm{~K}, R=0.052$ for 2129 unique observed reflections. The Pt atom of the cation is located on an inversion centre with bond distances $\mathrm{Pt}-\mathrm{N}=2.044$ (11) and 2.066 (9) \AA. . In the anion, the cis $\mathrm{Pt}-\mathrm{Cl}=2.301$ (3) and $2.300(4) \AA$ while the trans bond is $2 \cdot 321(4) \AA . \mathrm{Pt}-\mathrm{N}=$ 2.023 (10) \AA. The structure seems stabilized by extensive hydrogen bonding involving the ammine ligands and the amino group with the chloro ligands.

Introduction. Although the syntheses of $\mathrm{K}\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{3}\right]$ and $\mathrm{K}[\mathrm{Pt}$ (pyridine $\left.) \mathrm{Cl}_{3}\right]$ have been known for many years, the methods for the synthesis of monoamine platinum(II) complexes have been reported just recently (Rochon \& Fleurent 1988; Rochon, Melanson \& Doyon, 1987). These compounds are very important starting materials for the synthesis of mixed-ligand complexes of the type $\mathrm{Pt}(\mathrm{am})(L) \mathrm{Cl}_{2}$. The reaction of $\left[\mathrm{Pt}(\mathrm{am}) \mathrm{Cl}_{3}\right]^{-}$with L in water will produce the cis isomer (unless the amine is very bulky) since the trans effect of Cl is larger than that of amines. cis mixed-ligand complexes are important molecules in view of the potent antitumor activity of such compounds. If compounds with two different neutral ligands could be systematically synthesized, the screening range of platinum complexes
would be largely extended and antitumor activity, toxicity and solubility could be significantly modified.
One of the reported methods for the synthesis of primary monoamine $\mathrm{Pt}^{\mathrm{II}}$ compounds is restricted to bulky amines like tert-butylamine (Rochon \& Fleurent, 1988) while the second is more general and should be applicable to almost any amine ligand (Rochon, Melanson \& Doyon, 1987). We have already reported the crystal structure of the isopropylamine (Rochon, Melanson \& Doyon, 1987) and cyclopentylamine (Dion, Beauchamp, Rochon \& Melanson, 1989) compounds and we have found that the potassium salts crystallize with water of hydration which could also be clearly observed by infrared spectroscopy. The molecules of water are believed to play an important stabilizing role in these crystal structures. The O atom is very close to the K^{+}ion with $\mathrm{O} \cdots \mathrm{K}^{+}$distances of $2.756(9)-2.778$ (8) \AA. Hydrogen bonds were observed between the amino groups and the chloro ligands. In order to continue the study, especially on the role of the cation and the water molecules in these structures, we have replaced the K^{+}ion by a much larger cation $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$. We now report the crystal structure of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]-$ $\left[\mathrm{Pt} \text { (isopropylamine) } \mathrm{Cl}_{3}\right]_{2}$. These results are compared with those obtained on $\mathrm{K}[\mathrm{Pt}$ (isopropylamine)$\left.\mathrm{Cl}_{3}\right] . \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ described earlier. We report also the crystal structure of the $\mathrm{Pt}^{\mathrm{II}}$ complex with a more bulky ligand, $\mathrm{K}\left[\mathrm{Pt}(\right.$ tert-butylamine $\left.) \mathrm{Cl}_{3}\right] \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$, which again crystallizes with water of hydration.

Experimental. The compounds $\mathrm{K}[\mathrm{Pt}($ isopropylamine) $\left.\mathrm{Cl}_{3}\right] \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{K}\left[\mathrm{Pt}(\right.$ tert-butylamine $\left.) \mathrm{Cl}_{3}\right] \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ (I) were synthesized as already reported (Rochon \& Fleurent, 1988). Compound (I) was recrystallized from water. The complex salt $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Pt}$ (isopropylamine) $\left.\mathrm{Cl}_{3}\right]_{2}$ (II) was synthesized from the reaction of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{2}$ with $\mathrm{K}[\mathrm{Pt}$ (isopropylamine)$\left.\mathrm{Cl}_{3}\right] \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ in $1: 2$ proportion in water. Compound (II) was recrystallized from water.

The experimental details of the two crystal structure determinations are shown in Table 1. Syntex $P \overline{1}$; graphite-monochromatized Mo $K \alpha$ radiation; cell parameters from refined angles of 15 centered reflections (range 11-25); $\sigma(I)$ calculated as in Melanson

Table 1. Experimental details of the two crystal structures $\mathrm{K}\left[\mathrm{Pt}(\right.$ tert-butylarmine $\left.) \mathrm{Cl}_{3}\right] .{ }_{2} \mathrm{H}_{2} \mathrm{O}$ (I) and $\left.\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{Pt} \text { (isopropylamine) } \mathrm{Cl}_{3}\right]_{2}$ (II)

	(I)	(II)
Max. 2θ (${ }^{\text {(}}$	52	60
Quadrants	$h, k, \pm 1$	$h, k, \pm 1$
Scan technique	$2 \theta / \theta$	$2 \theta / \theta$
Scan speed (${ }^{\text {min }}{ }^{-1}$)	1.5-24.0	1.0-24.0
Standard reflections, variations (\%)	$\begin{aligned} & 622 ; 10,4, \overline{2} ; 333 \\ & <2 \cdot 0 \end{aligned}$	$\begin{aligned} & 040 ; 400 ; 008 \\ & <2 \cdot 0 \end{aligned}$
No. of independent reflections	2196	3355
Observed reflections	1743 ($I_{\text {net }}>2 \cdot 5 \sigma$)	$2129\left(I_{\text {nct }}>2 \cdot 5 \sigma\right)$
h, k, l	$0 \rightarrow 36,0 \rightarrow 7,-15 \rightarrow 15$	$0 \rightarrow 13,0 \rightarrow 11,-21 \rightarrow 21$
Crystal faces and	$(001)-(0001)(0 \cdot 125)$	$(102)-(\underline{1} 02)(0.053)$
dimensions (mm)	$(100)-(\overline{100)}(0.01 \underline{9})$	$(103)-(\underline{1} 0 \overline{3})(0.096)$
	$(0 \overline{1} 0)-(011),(01 \overline{1})(0 \cdot 332)$	$(101)-(\underline{1} 01])(0.096)$
		$(110)-(\underline{1} 10)(0 \cdot 231)$
		$(1 \overline{2} 1)-(\overline{12} \overline{1})(0 \cdot 260)$
Transmission factors	0.048-0.590	0.045-0.157
Max. shift/e.s.d.	0.04	0.03
$\Delta \rho_{\text {max }}\left(\mathrm{e} \AA{ }^{3}\right.$)	0.71 (close to Pt)	1.6 (close to Pt)
R	0.029	0.052
$w R$	0.030	0.049
Weighting scheme	$1 / \sigma^{2}(F)$	$1 / \sigma^{2}(F)$
Standard deviation (unit weight)	1.47	$1 \cdot 56$

\& Rochon (1975); absorption correction based on equations of crystal faces; data corrected for Lorentz and polarization effects; atomic scattering factors of Cromer \& Mann (1968) for $\mathrm{Pt}, \mathrm{Cl}, \mathrm{K}, \mathrm{O}, \mathrm{N}, \mathrm{C}$ and of Stewart, Davidson \& Simpson (1965) for H; anomalous-dispersion terms of Pt, Cl and K from Cromer (1965).

Patterson maps showed positions of Pt ; other non-H atoms located by structure factor and Fourier map calculations. A residual peak in (I) located on the twofold axis was assigned to a molecule of water. Refinement for both structures using full-matrix least-squares calculations minimizing $\sum w\left(F_{o}-F_{c}\right)^{2}$; isotropic secondary-extinction correction (Coppens \& Hamilton, 1970); several H atoms located from a difference Fourier map, others were calculated with $\mathrm{C}-\mathrm{H}=0.95$ and $\mathrm{N}-\mathrm{H}=0.85 \AA$, all fixed with isotropic $B=6.0 \AA^{2} ; \mathrm{H}$ atoms of water molecule not located; calculations on a Cyber 860 with programs of Melanson \& Rochon (1975).*

Discussion. The refined atomic parameters are listed in Table 2*. Labeled diagrams of the two structures are shown in Figs. 1 and 2. The bond distances and angles are listed in Table 3. The coordination around the Pt atoms in both crystals is square planar and the angles around the Pt atom are close to the expected values of 90 and 180°. For each crystal the weighted best coordination plane was calculated through the

[^0]Table 2. Refined coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic temperature factors $\left(\AA^{2} \times 10^{4}\right)$

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{\prime} a_{j}{ }^{*} \mathbf{a}_{i} . \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {cq }}$
(I)				
Pt	$990 \cdot 5$ (1)	7119.0 (5)	$6533 \cdot 6$ (2)	279
K	399 (1)	13408 (3)	3988 (1)	434
$\mathrm{Cl}(1)$	540 (1)	3968 (4)	6550 (2)	401
$\mathrm{Cl}(2)$	584 (1)	8352 (3)	5007 (2)	425
$\mathrm{Cl}(3)$	1371 (1)	5990 (4)	8101 (2)	502
N	1369 (2)	9985 (11)	6539 (5)	336
C(1)	1814 (3)	10104 (14)	6027 (6)	365
C(2)	1931 (4)	12574 (14)	5952 (8)	530
C(3)	1775 (4)	9074 (18)	4911 (7)	574
C(4)	2169 (3)	8941 (18)	6731 (8)	563
0	0	9523 (14)	7500	476
(II)				
$\mathrm{Pt}(1)$	2838.9 (5)	5418.6 (6)	$7320 \cdot 1$ (3)	338
$\mathrm{Pt}(2)$	0	0	$0 \cdot 5$	342
$\mathrm{Cl}(1)$	2798 (4)	2967 (4)	8082 (2)	510
$\mathrm{Cl}(2)$	830 (4)	4594 (4)	6504 (2)	540
$\mathrm{Cl}(3)$	3018 (4)	7822 (4)	6525 (2)	522
$\mathrm{N}(1)$	4542 (10)	6120 (12)	8079 (6)	395
N(2)	486 (14)	2374 (13)	6670 (7)	591
N(3)	359 (12)	448 (13)	6329 (6)	482
C(1)	4247 (15)	6789 (18)	8993 (8)	514
C(2)	5627 (17)	7087 (20)	9499 (10)	678
C(3)	3384 (18)	8444 (20)	8896 (9)	699

Table 3. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$
(I)

$\mathrm{Pt}-\mathrm{Cl}(1)$	2.317 (2)	$\mathrm{N}-\mathrm{C}(1)$	1.50 (1)
$\mathrm{Pt}-\mathrm{Cl}(2)$	$2 \cdot 314$ (2)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.53 (1)
$\mathrm{Pt}-\mathrm{Cl}(3)$	$2 \cdot 299$ (2)	$\mathrm{C}(1)-\mathrm{C}(3)$	1.52 (1)
$\mathrm{Pt}-\mathrm{N}$	2.055 (7)	$\mathrm{C}(1)-\mathrm{C}(4)$	1.50 (1)
$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{Cl}(2)$	89.79 (7)	$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)$	$106 \cdot 3$ (7)
$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{Cl}(3)$	$90 \cdot 27$ (8)	$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(3)$	110.4 (7)
$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{N}$	177.8 (2)	$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(4)$	109.4 (7)
$\mathrm{Cl}(2)-\mathrm{Pt}-\mathrm{Cl}(3)$	177.15 (8)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(3)$	$110 \cdot 1$ (7)
$\mathrm{Cl}(2)-\mathrm{Pt}-\mathrm{N}$	89.6 (2)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(4)$	109.5 (7)
$\mathrm{Cl}(3)-\mathrm{Pt}-\mathrm{N}$	$90 \cdot 3$ (2)	$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{C}(4)$	111.0 (7)
$\mathrm{Pt}-\mathrm{N}-\mathrm{C}(1)$	122.1(5)		
(II)			
$\mathrm{Pt}(1)-\mathrm{Cl}(1)$	$2 \cdot 301$ (3)	$\mathrm{Pt}(2)-\mathrm{N}(2)$	2.044 (11)
$\mathrm{Pt}(1)-\mathrm{Cl}(2)$	$2 \cdot 321$ (4)	$\mathrm{Pt}(2)-\mathrm{N}(3)$	2.066 (9)
$\mathrm{Pt}(1)-\mathrm{Cl}(3)$	$2 \cdot 300$ (4)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.50 (2)
$\mathrm{Pt}(1)-\mathrm{N}(1)$	2.023 (10)	$\mathrm{C}(1)-\mathrm{C}(3)$	1.57 (2)
$\mathrm{N}(1)-\mathrm{C}(1)$	1.52 (2)		
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{Cl}(2)$	89.9 (1)	$\mathrm{N}(2)-\mathrm{Pt}(2)-\mathrm{N}(3)$	$92 \cdot 3$ (4)
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{Cl}(3)$	176.4 (1)	$\mathrm{N}(2)-\mathrm{Pt}(2)-\mathrm{N}(3)^{\prime}$	87.8 (4)
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{N}(1)$	88.7 (3)	$\mathrm{Pt}(1)-\mathrm{N}(1)-\mathrm{C}(1)$	117.9 (8)
$\mathrm{Cl}(2)-\mathrm{Pt}(1)-\mathrm{Cl}(3)$	91.7 (1)	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	111 (1)
$\mathrm{Cl}(2)-\mathrm{Pt}(1)-\mathrm{N}(1)$	177.6 (3)	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(3)$	109 (1)
$\mathrm{Cl}(3)-\mathrm{Pt}(1)-\mathrm{N}(1)$	$89 \cdot 8$ (3)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(3)$	110 (1)

five atoms. The deviations are for (I): Pt, 0.0023 (3); $\mathrm{Cl}(1),-0.006$ (2); $\mathrm{Cl}(2), 0.049$ (2); $\mathrm{Cl}(3),-0.061$ (2); $\mathrm{N},-0.067$ (6) \AA and for (II): $\mathrm{Pt}(1),-0.0021$ (5); $\mathrm{Cl}(1), 0.062(3) ; \mathrm{Cl}(2),-0.006$ (3); $\mathrm{Cl}(3), 0.063(3)$; $\mathrm{N}(1),-0.068(9) \AA . \quad \operatorname{In} \quad\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right][\mathrm{Pt}$ (isopropylamine) $\left.\mathrm{Cl}_{3}\right]_{2}$ (II), the Pt atom of the cation is located on an inversion center, as expected for space group $P 2_{1} / c$. The structure of $\mathrm{K}[\mathrm{Pt}($ tert-butylamine)$\left.\mathrm{Cl}_{3}\right] \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ (I) is very similar to the analogues reported for isopropylamine (Rochon, Melanson \&

Doyon, 1987) and cyclopentylamine (Dion, Beauchamp, Rochon \& Melanson, 1989). All these compounds crystallize with half a molecule of water per Pt atom. When the K ion is replaced by a larger ion capable of forming hydrogen bonds such as $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$, the compound crystallizes without water of hydration. The enhanced lattice energy and the presence of hydrogen bonds between the different

Fig. 1. Labeled diagram of (I).

Fig. 2. Labeled diagram of the two ions $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]$ and $[\mathrm{Pt}$ (isopropylamine) $\left.\mathrm{Cl}_{3}\right]_{2}$ (II).

Table 4. Distances (\AA) and angles $\left({ }^{\circ}\right)$ between atoms involved in hydrogen bonds

$\mathrm{N} \cdots{ }^{\text {Cl(1) }}$	$3 \cdot 430$ (7)	$0 \cdots \mathrm{Cl}\left(1^{\text {ii) }}\right.$	$3 \cdot 366$ (7)
$0 \cdots \mathrm{Cl}\left(1^{\prime}\right)$	3.366 (7)	$\mathrm{C}(1)-\mathrm{N} \cdots \mathrm{Cl}(1)$	128.0 (5)
		$\mathrm{Pt}-\mathrm{N} \cdots \mathrm{Cl}(1)$	101.2 (2)
(II)			
$\mathrm{N}(1) \cdots \mathrm{Cl}\left({ }^{\text {(iii) }}\right.$)	$3 \cdot 40$ (1)	$\mathrm{N}(2) \cdots \mathrm{Cl}\left(2^{\nu}\right)$	$3 \cdot 26$ (1)
$\mathrm{N}(2) \cdots \mathrm{Cl}\left({ }^{\text {liv }}\right.$)	$3 \cdot 26$ (1)	$\mathrm{N}(3) \cdots \mathrm{Cl}(2)$	$3 \cdot 41$ (1)
$\mathrm{N}(2) \cdots \mathrm{Cl}(2)$	3.32 (1)	$\mathrm{N}(3) \cdots \mathrm{Cl}\left(3^{\text {i }}\right.$)	$3 \cdot 27$ (1)
$\mathrm{Pt}(1)-\mathrm{N}(1) \cdots \mathrm{Cl}(1)$	113.5 (4)	$\mathrm{Pt}(2)-\mathrm{N}(2) \cdots \mathrm{Cl}(2)$	$139 \cdot 5$ (5)
$\mathrm{C}(1)-\mathrm{N}(1) \cdots \mathrm{Cl}$	$117 \cdot 2$ (7)	$\mathrm{Pt}(2)-\mathrm{N}(3) \cdots \mathrm{Cl}(2)$	$105 \cdot 6$ (4)
${ }^{\mathrm{Pt}(2)-\mathrm{N}(2) \cdots \mathrm{Cl}(1)}$	104.5 (4)	$\mathrm{Pt}(2)-\mathrm{N}(3) \cdots \mathrm{Cl}(3)$	94.8 (4)

Symmetry code: (i) $x, y+1, z$; (ii) $-x, y+1, \frac{3}{2}-z$; (iii) $x+1, \frac{1}{2}+y, \frac{3}{2}-z$; (iv) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (v) $-x, 1-y, 1-z_{\text {; }}$ (vi) $x . y-1, z$.
ions are sufficient to stabilize the crystal. This is confirmed also in the crystal structure of 2adamantylammonium $\left[\mathrm{Pt}(\right.$ ethylamine $\left.) \mathrm{Cl}_{3}\right]$ which crystallizes without water of hydration (Rochon, Melanson, Doyon \& Butler, 1990). This structure is stabilized by hydrogen bonds between the large cation and the chloro ligands.

The cis $\mathrm{Pt}-\mathrm{Cl}$ bond distances are $2 \cdot 314$ (2) and $2 \cdot 299$ (2) \AA for (I) and $2 \cdot 300$ (4) and $2 \cdot 301$ (3) \AA for (II), while the bonds trans to the amine ligand seem slightly longer $2 \cdot 317$ (2) (I) and $2 \cdot 321$ (4) \AA (II) These values agree well with the published values found in other monoaminotrichloroplatinum(II) compounds (Dion, Beauchamp, Rochon \& Melanson, 1989; Rochon, Melanson \& Doyon, 1987) with cis bonds between $2 \cdot 296$ (4) and $2 \cdot 311$ (4) \AA and trans bonds which vary from $2 \cdot 315$ (4) to $2 \cdot 320$ (3) \AA. For 2 -adamantylammonium $\quad\left[\mathrm{Pt}(\right.$ ethylamine $\left.) \mathrm{Cl}_{3}\right]$ (Rochon, Melanson, Doyon \& Butler, 1990) the trans bond is longer $[2 \cdot 301$ (4) \AA] than the cis bonds $[2 \cdot 278$ (4) and $2 \cdot 281$ (4) $\AA]$. In $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{Pt}(2,6 \text {-lutidine }) \mathrm{Cl}_{3}\right]_{2}$ the three $\mathrm{Pt}-\mathrm{Cl}$ bonds are identical [cis: 2.302(2), $2 \cdot 303$ (2); trans: $2 \cdot 309$ (2) \AA] (Rochon \& Melanson, 1980). Therefore the trans influence of amines might be slightly larger than that of pyridine derivatives. But other factors, like the presence of π bonds which probably exist in Pt-pyridine complexes and the presence of hydrogen bonding can influence bond lengths.

The $\mathrm{Pt}-\mathrm{N}$ (amine) bond distances are 2.055 (7) (I) and 2.023 (10) \AA (II), similar to the values of 2.024 (5) - 2.040 (13) \AA found in the structures described above. The $\mathrm{Pt}-\mathrm{N}$ bonds in $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ (II) are 2.044 (11) and 2.066 (9) \AA, close to the values $[2.052$ (7) and $2.057(5) \AA]$ found in $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}[\mathrm{Pt}-$ (2,6-lutidine) $\left.\mathrm{Cl}_{3}\right]_{2}$ (Rochon \& Melanson, 1980) and those reported in Pt -ammine complexes (Milburn \& Truter, 1966; Melanson \& Rochon, 1978; Faggiani, Lippert, Lock \& Rosenberg, 1978; Lippert, Lock, Rosenberg \& Zvagulis, 1978). These values are slightly longer than the values found for Pt -amine or pyridine compounds. Ammine ligands usually form
more extensive hydrogen bonds than primary or secondary amines, which could account for the slight lengthening of the $\mathrm{Pt}-\mathrm{NH}_{3}$ bonds. The organic ligands isopropylamine and tert-butylamine have normal bond lengths and angles.

The packing of the molecules in the crystal $\mathrm{K}\left[\mathrm{Pt}(\right.$ tert-butylamine $\left.) \mathrm{Cl}_{3}\right] \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ (I) is shown in Fig. 3. The O atom of the water molecule is located on a twofold axis, exceptionally close to two K^{+}ions, with distance $\mathrm{O} \cdots \mathrm{K}^{+}=2.771(6) \AA$, and forms hydrogen bonds with two $\mathrm{Cl}(1)$ ligands with distance $\mathrm{O} \cdots \mathrm{Cl}(1)=3.366$ (7) \AA (Table 4). The K^{+}ion is also surrounded by five Cl atoms at distances $3 \cdot 167$ (3) $3 \cdot 326$ (3) \AA, suggesting that packing energy around the K^{+}ion is an important stabilizing factor in the crystal. There is one $\mathrm{N} \cdots \mathrm{Cl}(1)$ contact [3.430 (7) \AA] within the accepted range for hydrogen bonding (Stout \& Jensen, 1968), suggesting that the amino group might be involved in hydrogen bonding with one trans chloro ligand. The packing of the molecules consists of layers of complexed anions separated by layers of K^{+}and water molecules parallel to the $b c$ plane. Fig. 3 shows clearly that the hydrophilic parts of the molecules are located around $x=$ 0 and 0.5 where the K^{+}ions, the water molecules

Fig. 3. Stereoscopic view of the packing in (I). Dark circles correspond to the water O atoms. The a axis is vertical and the c axis is horizontal.

Fig. 4. Packing of the ions in (II). The a axis is horizontal and the c axis is vertical.
and the chloro ligands are found, while the hydrophobic tert-butyl groups are orientated towards each other around $x=0.25$ and 0.75 .
The intramolecular structure of the ion [Pt(isopropylamine) $\left.\mathrm{Cl}_{3}\right]^{-}$is identical for the two ions K^{+}and $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$. The differences are in their intermolecular interactions. In the potassium salt, the packing energy around the K^{+}ion seems a very important stabilizing factor, with a short $\mathrm{K}^{+}{ }^{+} \mathrm{O}$ contact of 2.778 (8) \AA and six chlorine atoms at distances of $3 \cdot 199$ (4) $-3 \cdot 316$ (4) \AA from the K^{+}ion. There may also be one weak hydrogen bond [distance $\mathrm{N} \cdots \mathrm{Cl}=3.42(1) \AA$] between the $-\mathrm{NH}_{2}$ group and the trans Cl ligand, but this interaction does not seem an important stabilizing factor. In the $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ complex salt, the hydrogen bonding involving the NH_{3} ligands is extensive and is a very important factor for stabilizing the crystal. A list of the possible hydrogen bonds is shown in Table 4. There is also a weak intermolecular hydrogen bond between the amine and one of the Cl ligands. A stereoscopic view of the unit cell is shown in Fig. 4. The packing consists of layers of cations located at $x=0$ and parallel to the $b c$ plane, separated by layers of complexed anions with the hydrophilic chloro ligands oriented towards the $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ layers and the hydrophobic isopropyl groups located inside at $x=\frac{1}{2}$.

The authors are grateful to the Natural Sciences and Engineering Research Council of Canada for financial support.

References

Coppens, P. \& Hamilton, W. C. (1970). Acta Cryst. A26, 71-83. Cromer, D. T. (1965). Acta Cryst. 18, 17-23.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Dion, C., Beauchamp, A. L., Rochon, F. D. \& Melanson, R. (1989). Acta Cryst. C45, 852-856.

Faggiani, R., Lippert, B., Lock, C. J. L. \& Rosenberg, B. (1978). Inorg. Chem. 17, 1941-1945.

Lippert, B., Lock, C. J. L., Rosenberg, R. \& Zvagulis, M. (1978). Inorg. Chem. 17, 2971-2975.

Melanson, R. \& Rochon, F. D. (1975). Can. J. Chem. 53, 2371-2374.
Melanson, R. \& Rochon, F. D. (1978). Acta Cryst. B34, 941-943.
Milburn, G. H. W. \& Truter, M. R. (1966). J. Chem. Soc. A, pp. 1609-1616.
Rochon, F. D. \& Fleurent, L. (1988). Inorg. Chim. Acta, 143, 81-87.
Rochon, F. D. \& Melanson, R. (1980). Acta Cryst. B36, 691-693.
Rochon, F. D., Melanson, R. \& Doyon, M. (1987). Inorg. Chem. 26, 3065-3068.
Rochon, F. D., Melanson, R., Doyon, M. \& Butler, I. S. (1990). Acta Cryst. C46, 584-587.

Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Stout, G. H. \& Jensen, L. H. (1968). X-ray Structure Determination, A Practical Guide, p. 303. New York: Wiley-Interscience.

[^0]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54254 (26 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

